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ABSTRACT
Sensors typically record their measurements using more precision
than the accuracy of the sensing techniques. Thus, experimental and
observational data often contain noise that appears random and can-
not be easily compressed. This noise increases storage requirement
as well as computation time for analyses. In this work, we describe a
line of research to develop data reduction techniques that preserve
the key features while reducing the storage requirement. Our core
observation is that the noise in such cases could be characterized by
a small number of patterns based on statistical similarity. In earlier
tests, this approach was shown to reduce the storage requirement
by over 100-fold for one-dimensional sequences. In this work, we
explore a set of different similarity measures for multidimensional
sequences. During our tests with standard quality measures such
as Peak Signal to Noise Ratio (PSNR), we observe that the new
compression methods reduce the storage requirements over 100-
fold while maintaining relatively low errors in PSNR. Thus, we
believe that this is an effective strategy to construct data reduction
techniques.

CCS CONCEPTS
• Computing methodologies → Probabilistic reasoning; Feature
selection; • Networks→ Network performance analysis.
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1 INTRODUCTION
In this new age of data, the amount of available data increases
faster than our capacity to analyze it. One of the highest priorities
in data science is the ability to analyze streaming data from the
large number of sensors; however, as the amount of data increases,
real-time analysis becomes increasingly challenging. One of the
solutions to this issue is to build algorithms that reduce incoming
data into more manageable sizes. One common method for this
is compression [16, 22, 24]. However, even the best-known lossy
compression techniques do not work well on noisy sensor data [2,
12]. Typically, analysis tasks on such datasets focus on large-scale
features or extreme values, and not on small variations. In these
cases, we have developed an effective approach based on statistical
similarity [6, 9–11].

On large datasets with mostly floating-point values, lossless
compression techniques are not effective; thus, none of the recently
developed compression methods for numerical values attempts
to preserve the full precision of the original values. Those new
techniques are categorized as lossy methods [1, 2, 7, 8, 12], and
mmong them, ZFP [12] and SZ [2, 21] are particularly effective
in taking advantage of the relatively slow variations among the
neighbors in space and time. On large simulation datasets, where
the phenomenon being simulated is captured in enough precision
that the neighboring cells typically have adjoining values, both
ZFP and SZ could reduce the storage requirements by a factor of
over 100. However, in sensor data streams, such smoothness is
not present. For example, the electric current from a power grid
monitoring measurement dataset and the electric voltage in an
electroencephalogram (EEG) both appear to be quite random. In
such cases, these state of art floating-point compression algorithms
are still not effective.

In these and many other use cases, small random fluctuations are
not of interest to the domain scientists. Therefore, it is sufficient to
capture the main statistical properties. In designing a new compres-
sion method, the key choice is what statistical properties should be
preserved. Our initial work choose to preserve a statistical prop-
erty known as exchangeability [4]. In a number of earlier tests, we
showed that this technique was able to reduce the storage require-
ments by more than 100-fold while preserving important properties
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of the data [9–11]. However, the existing software relies on a statis-
tical similarity measure known as the Kolmogorov-Smirnov (KS)
test that is only able to work with one-dimensional sequences.

The main contribution of this work includes:
• we explore new similarity measures that can be more easily
extended to higher dimensions;

• we conduct extensive tests with a number of different types
of data to study the effectiveness of the compression tech-
nique with the new similarity measures;

• we compare against the state of art methods using the com-
mon compression quality measure including Peak Signal to
Noise Ratio (PSNR).

This work further demonstrates that the data reduction technique
with statistical similarity is an effective approach for compression.

The rest of this paper is organized as follows. In Section 2, we
briefly review related work and discuss the key design considera-
tions of the software implementation known as IDEALEM [19]. We
describe the new multidimensional similarity measures in Section 3.
An extensive evaluation of IDEALEM is given in Section 4. We
conclude with a brief summary and the discussion of future work
in Section 5.

2 RELATEDWORK
Data compression reduces the storage for representing the same
information. This is accomplished by identifying patterns in the
data [16]. Data compressionmethods are categorized into two broad
classes: lossless coding where the reconstruction of compressed data
is identical to the original data; and lossy coding where the recon-
structed data is different from the original data. Next, we briefly
review lossy compression methods and highlight two design con-
siderations that drive the design of Implementation of Dynamic Ex-
tensible Adaptive Locally Exchangeable Measures (IDEALEM) [19].
The first one is redefining the distance (similarity) measure between
sequences of numerical values; and the second is to allow analysis
to be performed directly on the compressed data.

Redefine Similarity Measures. We focus on lossy techniques as
they can more effectively reduce the storage requirement. For
floating-point values, a common codingmethod is quantization [16].
In fact, the most effective compression techniques, such as ZFP [12]
and SQE [7], are based on quantization. Another common approach
is to apply some forms of prediction based on neighbors in space
and time [2].

The information loss due to compression is oftenmeasured by the
Euclidean distance (ℓ2 distance) between reconstructed data and the
original data. This distance may be represented as the mean squared
error (MSE) and the signal-to-noise ratio (SNR) [14, 16]. To increase
the possibility of compression, we believe it is necessary to adopt
alternative statistical measures for differences between original data
and compressed data. Earlier, we used the KS similarity measure;
and in this work, we explore additional similarity measures. We
note that none of these measures are strictly distance measures.
The rationale behind this choice is that this choice increases the
potential of data reduction by allowing more forms of differences
to be tolerated. This is driven by the observation that the relatively
small variations in the sensor data are not important to the scientific
applications. For example, the exact voltage measurements are not

of interest to electric grid system operators as long as they are
within the specified tolerance.

Though the KS similarity measure was found to be effective
for one-dimensional sequences [9–11], we have not found an easy
way to extend it to multidimensional data. In this work, we ex-
plore similarity measures that could be more easily extended to
multidimensional data [18], as shown in Section 3.

AllowingAnalysis without Decompression. Our compressionmethod
IDEALEM stores the first instance of each group of similar data
block as is. These preserved data blocks act as dictionary entries of
a dictionary-based compression method [16, 20]. Similar to other
dictionary-based methods, the compressed data can be used directly
without decompression, which allows advanced analysis operations
directly on the compressed data. In this work, we focus on the basic
properties of the decompressed data, such as PSNR.

By storing the first instance of each group of similar blocks
precisely, we can reproduce this block exactly when we encounter
it for the first time during decompression. If this data block only
appears once, it is preserved accurately. Typically, the data blocks
containing extreme values are distinct from others and therefore
would be preserved with our compression method.

When a dictionary block is used for a second time, we need
to decide what to do with the actual values. We have studied a
number of options to mitigate the impact of reproducing multiple
copies from a single dictionary block [23]. In general, we can regard
this as regenerating data from a recorded kernel or generator. This
suggests a number of different analysis options that we plan to
explore in the near future.

3 MULTIDIMENTIONAL SIMILARITY
MEASURES

Given two sequences of n values each, x ≡ (x1,x2, . . . ,xn ) and y ≡

(y1,y2, . . . ,yn ), the most common way to measure the difference
between them is the Euclidean distance

E =

√√ n∑
i=1

(xi − yi )
2. (1)

There are a number of different ways to generalize this difference
measure (also known as dissimilarity) [18]. We broadly refer to
them as similarity measures. From earlier studies [17, 18], we have
selected the dynamic time warping (DTW) [15] and minimum jump
cost (MJC) [17] as the similarity measures to study for this work.
Previous publications have shown that these similaritymeasures are
effective in a wide variety of applications and are also relatively easy
to compute [17, 18]. For clarity, we only describe these similarity
measures for one-dimensional sequences, however, these similarity
measures can be extended easily to multidimensional cases where
each of xi and yi is a vector.

Dynamic Time Warping. Dynamic Time Warping (DTW), see
Fig. 1, is a classic definition of similarity between x and y. Let D j,k
denote the similarity between the first j elements of x and the first
k elements of y. Starting with D0,0 ≡ 0, the DTW measure D j,k is
recursively defined as

D j,k = f
(
x j ,yk

)
+min

{
D j,k−1,D j−1,k ,D j−1,k−1

}
, (2)



Figure 1: Distance measures: Euclidean distance, dynamic
time warp (DTW) and minimum jump cost (MJC) with re-
spective similarity measures of 14, 11, and 11.

The function f
(
x j ,yk

)
in Equation 2 is known as the sample simi-

larity function, which is often taken to the Euclidean distance. We
follow this practice in the current work.

It is necessary to compute all n2 values of D j,k in order to obtain
the final DTW measure Dn,n . This matrix of D j,k also provides a
way for aligning x and y.

Minimum Jump Cost. Minimum jump cost (MJC) [17] works by
accumulating the cost of “jumping” from one time series data point
to the nearest data point in the other time series.

J =
∑
i
C
(i)
min ≡

∑
i
min

{
c
yj
xi , c

yj+1
xi , . . .

}
, (3)

where j − 1 is the position in y that xi−1 jumped to, and cyjxi is the
sample similarity measure that includes the time difference and the
difference between xi and yj [17]. An illustration of MJC is given
in Fig. 1.

MJC preserves the core concept of DTW, but no longer com-
putes all n2 similarity values to obtain the final one. Therefore, we
expect MJC to require less compute time, and what we need to
understand is how well it works for defining similar data blocks for
data reduction.

Both DTW and MJC give up the need to match the ith element of
x with the ith element of y, which effectively allows values in two
sequences to appear in different orders. This is an important feature
in our attempt to relax the similarity measure for data reduction,
and also motivated our choices on how to reconstruct the data
blocks from dictionary blocks [23].

4 EVALUATION
In this section we present an empirical evaluation of IDEALEM
with the two similarity measures, and explore how well they work
for multidimensional data compression. We start with a brief de-
scription of the test datasets.

4.1 Multidimensional Datasets
Power grid monitoring measurements. This dataset is from an

ongoing experiment at Lawrence Berkeley National Laboratory
(LBNL). It contains data from µPMU installed around LBNL site.
The full dataset contains twelve variables related to four measure-
ments about the three phases of the alternate current system [13]:
voltage, current, phase angles of the voltage, and phase angle of the
current. Some individual measurements have been used in previous
studies [9, 11].

Distributed Acoustic Sensing. Distributed Acoustic Sensing (DAS)
is a technology that turns unused optical fibre meant for telecom-
munication into sensors for ground motion [5]. DAS data can be
viewed as generated from thousands of sensors, which we regard
as thousands of dimensions for our time series data. In this test,
we have used a sample DAS dataset containing 11,000 sensors over
30000 time points [5], which is from a larger dataset collected over
a three-week monitoring period (April 4-26, 2015) resulting about
2.7 terabyte in size and 31,000 individual files.

Natural images. In this study we consider the compression of
full color images. We use images in public domain that contain a
large range of colors. For example, we use the scene of a sunset
in Fig. 4 which displays vivid reds that contrast with vivid blues.
These kind of images should be in principle harder to compress
since the underlying data is more varied. We format the image
data as a 3×N vector where N is the number of pixels in the image.
With this structure, each element of the vector is a 3d data point
containing the red, green and blue integer values of a certain pixel.

4.2 Performance measures
To measure the effectiveness of IDEALEM, we focus on two com-
mon performance metrics: compression ratio (CR) and peak signal-
to-noise ratio (PSNR), where CR is defined to be the ratio between
uncompressed data size and compressed size, and PSNR can be
defined as

PSNR = 10 · log10

(
MAX 2

x
MSE

)
.

Where MSE is the mean squared error, and is defined as

MSE =
1
n

n∑
i=1

(xi − yi )
2.



PSNR is expressed in terms of a logarithmic decibel scale, and is
thus normalized even in datasets with large ranges. In the previous
studies, we have avoided using PSNR and other quality measures
based on MSE since IDEALEM is not designed to control Euclidean
distance based data quality. However, in the realm of data compres-
sion, PSNR is one of the most commonly used quality measures, so
we choose the PSNR vs. CR curve to display the compression effec-
tiveness. It should be noted that PSNR relies on inverse MSE, so as
PSNR increases, compression quality also increases. Values higher
than 30 are generally considered to produce reliable decompression
results.

4.3 MJC vs DTW
To choose between MJC and DTW, we use a subset of the power
grid monitoring measurement dataset. We use the first two current
magnitudes making it a 2D dataset. We select the parameters that
allow the two compression algorithms to produce a compression
ratio of 100, and compare the PSNR and execution time. The result
is in Table 1. We expected the compression algorithm with MJC as
similarity measure to use less CPU time, while sacrificing quality to
a certain extent. We observed that for a 8× speed-up, there would
only be a 2% decrease in PSNR.

We expected MJC to have a faster run-time than DTW because
it only jumps forward and doesn’t have to compute the full matrix
multiplication. We also observed that MJC has lower error for the
full dictionary size as shown in Table 1.

Dictionary Size PSNR Run-time MSE
2 DTW 32.4 0.214 0.281

MJC 32.6 0.183 0.262
20 DTW 34.4 0.624 0.215

MJC 34.3 0.336 0.217
100 DTW 35.5 1.339 0.0580

MJC 35.4 0.629 0.0586
255 DTW 34.8 1.318 0.0580

MJC 35.4 0.686 0.0586
Table 1: A comparison of PSNR, run-time, and MSE at 100
CR for various dictionary sizes of MJC and DTW.

We can summarize that in general, MJC outperformsDTW.When
analyzing LBNL power grid monitoring dataset with the largest
dictionary size, we also observed the effectiveness of MJC against
the leading O(n) time compression algorithm in SZ [2, 3, 21]. In
general, SZ [2, 21] is efficient and results in better compression
ratios. However, for those highly variable data, SZ leads to lower
PSNR due to its dependency on nearby points to perform recon-
struction, such as output from power grid monitoring sensors as
shown Fig. 3. SZ minimizes the MSE of the data which leads to
data in high variable ratios to be over-simplified to show only the
mean of nearby data points. IDEALEM has an intrinsic difference
with statistical similarity measures, where the MSE is controlled
indirectly with a similarity measure and by using stored buffers
of actual data. This results in the decompressed data closer to the
original dataset especially in highly variable dataset. In Fig. 3, MJC
visually deviates much less from the original data than SZ at 100 CR.

0 50 100 150 200 250 300
Compression Ratio
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Figure 2: Compression ratio plotted against PSNR for SZ
(red) and MJC (blue)

Also, in Fig. 2, MJC has higher PSNR (lower error) at compression
ratios above 80. While there is a relative inefficiency in run-time,
MJC preserves many features in reconstructed (decompressed) data
especially for highly variable data.

Figure 3: Comparison of MJC (top figure) and SZ (bottom fig-
ure) compression quality over a single stream of power grid
monitoring data for current over time at 100 CR. MJC has a
run-time of 0.686 seconds with a PSNR of 35.4, and SZ has a
run-time of 0.009 seconds with a PSNR of 33.5.

4.4 Visual Validation
As a preliminary validation of our compression approach, we show
some comparison between compressed and uncompressed images.
In this case, we treat RGB values of pixels as dimensions and lin-
earize the pixels in a time series, and an example on a sample image



Figure 4: Compressing an image as 3D (RGB) sequences
could reduce the storage requirement significantly with
minimal compression artifacts.

1 is shown in Fig. 4. We can visually see that the compressed im-
ages in Fig. 4 contains minimum compression artifact even at the
compression ratio above 50.
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Figure 5: Impact of the dictionary size. Generally, a larger
dictionary size is better for compression, but in this case, in-
creasing dictionary size does not significantly change either
CR or PSNR.

4.5 Selecting IDEALEM Parameters
IDEALEM compression is controlled by a number of parameters [6],
and we briefly illustrate next how they affect CR and PSNR. We
perform the following tests using the two dimensional power grid
monitoring dataset. Fig. 5 shows how the size of the dictionary
affects the performance of IDEALEM. Generally, we see that with a
modest dictionary size, the PSRN vs. CR curves are about the same,
which indicates that the number of distinct patterns are relatively

1image by Nina Fox, https://chemtrailsnorthnz.wordpress.com/2010/07/23/hawaii-
napili-sunset%E2%80%8F-july-21-2010/

Figure 6: Impact of the buffer size. Generally smaller buffer
sizes produced higher PSNR.

small. Had there been more distinct patterns, more dictionary en-
tries might be needed in order to achieve better compression ratio
or larger PSNR.

Fig. 6 illustrates how the buffer size affects the performance.
While there is no theoretical understanding of how to select this
parameter, we observe from Fig. 6 that the buffer size of 8 produces
better data quality in compression ratios of 0-100, and a buffer size
of 16 produces better data quality at compression ratios 100-225.
At larger compression ratios, 32 buffer size performs the best. From
this initial analysis, we can give the preliminary conclusion that
at smaller compression ratios, smaller buffer sizes work better and
that at larger compression ratios, it is better to use larger buffer
sizes.

5 SUMMARY AND FUTUREWORK
In this paper, we describe the multidimensional similarity measures
as well as their impact on the data reduction. This work extends
the IDEALEM, an approach of using statistical pattern matching to
reduce the storage requirement for sequences of numerical values to
utilizes multidimensional similarity measures including Minimum
Jump Cost (MJC) and Dynamic Time Warp (DTW) to find similar
data blocks and create a dictionary of “patterns.” By using these
similarity measures, we are able to apply the statistical similarity
based data reduction technique to multidimensional sequences. For
our tests, we evaluated with a variety of data including sensor data,
images and video (not described in the paper) that it is possible
to reduce the storage requirement by more than 100-fold while
preserving essential features of the data. The work is incorporated
in a software package called IDEALEM and is available at [19].

There are considerable amount of additional work need to further
quantify the effectiveness of this approach. For example, there are



many different ways of selecting the similarity measures. We have
demonstrated that some of them work quite well, and we need
to develop a framework to automatically select the most effective
similarity measure. For high dimensional data (e.g. video), there
are many ways of folding the data into sequences, and additional
work is needed to understand the optimal data organization in these
cases.
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